Function Examples
 Lecture 19

Robb T. Koether
Hampden-Sydney College

Fri, Oct 11, 2019
(1) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

Outline

(9) Convert Fahrenheit to Celsius

(2) Find the Dimensions of a Rectangle

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

Outline

(9) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Problem

The Problem

Write a program that will

- Compute the equivalent Celsius temperature of each Fahrenheit temperature within a specified range.
- Print the Fahrenheit temperature in that range and its Celsius equivalent.
- Round the Celsius temperature to the nearest 10th of a degree.

Outline

(9) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Input and Output

- Input: the starting temperature and the ending temperature, in Fahrenheit.
- Output: each Fahrenheit temperature in the range, its Celsius equivalent, rounded to the nearest 0.1.

Outline

(9) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

Example

- Let the starting temperature be $65^{\circ} \mathrm{F}$ and the ending temperature $70^{\circ} \mathrm{F}$.

Example

- Let the starting temperature be $65^{\circ} \mathrm{F}$ and the ending temperature $70^{\circ} \mathrm{F}$.
- We must compute the Celsius equivalent of 65, 66, 67, 68, 69, and 70 F.

Example

- Let the starting temperature be $65^{\circ} \mathrm{F}$ and the ending temperature $70^{\circ} \mathrm{F}$.
- We must compute the Celsius equivalent of 65, 66, 67, 68, 69, and 70 F.
- For 65 F, the calculation is

$$
\begin{aligned}
\text { temp in } \mathrm{C} & =(65-32) \cdot 5 / 9 \\
& =33 \cdot 5 / 9 \\
& =165 / 9 \\
& =18.3333 \ldots
\end{aligned}
$$

Example

- Let the starting temperature be $65^{\circ} \mathrm{F}$ and the ending temperature $70^{\circ} \mathrm{F}$.
- We must compute the Celsius equivalent of $65,66,67,68,69$, and 70 F.
- For 65 F, the calculation is

$$
\begin{aligned}
\text { temp in } \mathrm{C} & =(65-32) \cdot 5 / 9 \\
& =33 \cdot 5 / 9 \\
& =165 / 9 \\
& =18.3333 \ldots
\end{aligned}
$$

- The output should be 65 and 18.3.

Example

- Let the starting temperature be $65^{\circ} \mathrm{F}$ and the ending temperature $70^{\circ} \mathrm{F}$.
- We must compute the Celsius equivalent of $65,66,67,68,69$, and 70 F .
- For 65 F, the calculation is

$$
\begin{aligned}
\text { temp in } \mathrm{C} & =(65-32) \cdot 5 / 9 \\
& =33 \cdot 5 / 9 \\
& =165 / 9 \\
& =18.3333 \ldots
\end{aligned}
$$

- The output should be 65 and 18.3.
- Do the same for the other temperatures.

Outline

(9) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Algorithm

- Begin with the starting temperature. Call it "fahr_temp."

The Algorithm

- Begin with the starting temperature. Call it "fahr_temp."
- Subtract 32 from fahr_temp and multiply by 5/9.

The Algorithm

- Begin with the starting temperature. Call it "fahr_temp."
- Subtract 32 from fahr_temp and multiply by 5/9.
- Round off the result to one decimal place. Call it cels_temp.

The Algorithm

- Begin with the starting temperature. Call it "fahr_temp."
- Subtract 32 from fahr_temp and multiply by 5/9.
- Round off the result to one decimal place. Call it cels_temp.
- Output fahr_temp and cels_temp.

The Algorithm

- Begin with the starting temperature. Call it "fahr_temp."
- Subtract 32 from fahr_temp and multiply by 5/9.
- Round off the result to one decimal place. Call it cels_temp.
- Output fahr_temp and cels_temp.
- Add 1 to fahr_temp.

The Algorithm

- Begin with the starting temperature. Call it "fahr_temp."
- Subtract 32 from fahr_temp and multiply by 5/9.
- Round off the result to one decimal place. Call it cels_temp.
- Output fahr_temp and cels_temp.
- Add 1 to fahr_temp.
- Repeat the previous three steps until fahr_temp exceeds the ending temperature.

Outline

(9) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Code

- We will use two functions.
- float Fahr2Cels (int fahr_temp);
- float round(float value, int places);
- The function Fahr2Cels () will convert the Fahrenheit temperature and return its Celsius equivalent, rounded to one decimal place.
- The function round () will round the first parameter to the number of decimal places specified by the second parameter.

The Code

- Clearly, we should use a for loop to step through the Fahrenheit temperatures.
- For each temperature, we will call on the Fahr2Cels () function to get the Celsius equivalent.
- Then output the two temperatures.

The Code

```
The Code - main()
int main()
{
    int start;
    int end;
    cin >> start >> end;
    for (int fahr_temp = start; fahr_temp <= end; fahr_temp++)
    {
        float cels_temp = Fahr2Cels (fahr_temp);
        cout << fahr_temp << " " << cels_temp << endl;
    }
    system("pause");
    return 0;
}
```


The Code

The Code-Fahr2Cels ()

 float Fahr2Cels(int fahr_temp) \{float cels_temp $=($ fahr_temp -32$) * 5.0 / 9.0$; return round(cels_temp, 1);

The Code

```
The Code - round ()
float round(float value, int places)
{
    float shift = power(10.0, places);
float temp = value*shift;
temp = round(temp)/shift;
return temp;
}
```


Outline

(1) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

Outline

(1) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Problem

The Problem

- Given the area and perimeter of a rectangle, find the length and width of that rectangle.

Outline

(1) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Input and Output

The Problem

- The input is the area and perimeter of the rectangle.
- The output is the length and width of the rectangle.

Outline

(1) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

Example

Example

- Let the area be 24 and the perimeter be 20.

Example

Example

- Let the area be 24 and the perimeter be 20.
- Let the length be L and the width be W.

Example

Example

- Let the area be 24 and the perimeter be 20.
- Let the length be L and the width be W.
- Then $L W=24$ and $L+W=10$ (half the perimeter).

Example

Example

- Let the area be 24 and the perimeter be 20.
- Let the length be L and the width be W.
- Then $L W=24$ and $L+W=10$ (half the perimeter).
- How do we find L and W ?

Example

Example

- Solve the equations for L by eliminating W.

Example

Example

- Solve the equations for L by eliminating W.
- We have $W=10-L$, so

$$
\begin{aligned}
24 & =L(10-L) \\
24 & =10 L-L^{2} \\
L^{2}-10 L+24 & =0 .
\end{aligned}
$$

Example

Example

- Solve the equations for L by eliminating W.
- We have $W=10-L$, so

$$
\begin{aligned}
24 & =L(10-L) \\
24 & =10 L-L^{2} \\
L^{2}-10 L+24 & =0 .
\end{aligned}
$$

- We can factor that equation as

$$
(L-4)(L-6)=0 .
$$

Example

Example

- Solve the equations for L by eliminating W.
- We have $W=10-L$, so

$$
\begin{aligned}
24 & =L(10-L) \\
24 & =10 L-L^{2} \\
L^{2}-10 L+24 & =0 .
\end{aligned}
$$

- We can factor that equation as

$$
(L-4)(L-6)=0 .
$$

- Thus, $L=4$ or $L=6$.

Example

Example

- Solve the equations for L by eliminating W.
- We have $W=10-L$, so

$$
\begin{aligned}
24 & =L(10-L) \\
24 & =10 L-L^{2} \\
L^{2}-10 L+24 & =0 .
\end{aligned}
$$

- We can factor that equation as

$$
(L-4)(L-6)=0 .
$$

- Thus, $L=4$ or $L=6$.
- And so $W=6$ or $W=4$.

Example

Example

- In the example, we solved the quadratic equation

$$
L^{2}-10 L+24=0
$$

by factoring it.

- To solve it in a program, we should use the quadratic formula:

$$
\begin{aligned}
L & =\frac{10 \pm \sqrt{10^{2}-4(1)(24)}}{2(1)} \\
& =\frac{10 \pm \sqrt{4}}{2} \\
& =5 \pm 1 \\
& =4 \text { or } 6
\end{aligned}
$$

Outline

(1) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Algorithm

The Algorithm

- Read the area and the perimeter.

The Algorithm

The Algorithm

- Read the area and the perimeter.
- Let b be half the perimeter and c be the area.

The Algorithm

The Algorithm

- Read the area and the perimeter.
- Let b be half the perimeter and c be the area.
- Solve the quadratic equation

$$
x^{2}-b x+c=0
$$

The Algorithm

The Algorithm

- Read the area and the perimeter.
- Let b be half the perimeter and c be the area.
- Solve the quadratic equation

$$
x^{2}-b x+c=0
$$

- The solutions are

$$
L=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

The Algorithm

The Algorithm

- Read the area and the perimeter.
- Let b be half the perimeter and c be the area.
- Solve the quadratic equation

$$
x^{2}-b x+c=0
$$

- The solutions are

$$
L=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

- Find $W=$ area $/ L$.

The Algorithm

The Algorithm

- Read the area and the perimeter.
- Let b be half the perimeter and c be the area.
- Solve the quadratic equation

$$
x^{2}-b x+c=0
$$

- The solutions are

$$
L=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

- Find $W=$ area $/ L$.
- Output © and L.

Outline

(1) Convert Fahrenheit to Celsius

- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code
(2) Find the Dimensions of a Rectangle
- The Problem
- The Input and Output
- An Example
- The Algorithm
- The Code

The Code

The Code

- We will break the program up into functions.
- int main()
- void findDims(float area, float perim, float\& len, float\& wid)
- void solveQuadEq(float a, float b, float c, float\& root1, float\& root2)

The Code

The Code - main ()

int main()
\{
float area;
float perim;
cin >> area >> perim;
float length;
float width;
findDims(area, perim, length, width);
cout << "Length = " << length;
cout << ", width = " << width << endl;
return 0;

The Code

The Code - findDims ()
void findDims(float area, float perim, float\& len, float\& wid) \{
solveQuadEq(1.0, -perim/2.0, area, len, wid); return;
\}

The Code

The Code - solveQuadEq ()

void solveQuadEq(float $a, ~ f l o a t ~ b, ~ f l o a t ~ c, ~ f l o a t \& ~ r o o t 1, ~$ float\& root2)

```
float discr = sqrt(b*b - 4.0*a*c);
root1 = (-b + discr)/(2.0*a);
root2 = (-b - discr)/(2.0*a);
return;
```

\}

